Application of Wavelet Analysis in EMG Feature Extraction
نویسندگان
چکیده
Nowadays, analysis of electromyography (EMG) signal using wavelet transform is one of the most powerful signal processing tools. It is widely used in the EMG recognition system. In this study, we have investigated usefulness of extraction of the EMG features from multiple-level wavelet decomposition of the EMG signal. Different levels of various mother wavelets were used to obtain the useful resolution components from the EMG signal. Optimal EMG resolution component (sub-signal) was selected and then the reconstruction of the useful information signal was done. Noise and unwanted EMG parts were eliminated throughout this process. The estimated EMG signal that is an effective EMG part was extracted with the popular features, i.e. mean absolute value and root mean square, in order to improve quality of class separability. Two criteria used in the evaluation are the ratio of a Euclidean distance to a standard deviation and the scatter graph. The results show that only the EMG features extracted from reconstructed EMG signals of the first-level and the second-level detail coefficients yield the improvement of class separability in feature space. It will ensure that the result of pattern classification accuracy will be as high as possible. Optimal wavelet decomposition is obtained using the seventh order of Daubechies wavelet and the forth-level wavelet decomposition.
منابع مشابه
Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملEmg Signal Classification Using Wavelet Transform and Fuzzy Clustering Algorithms
The electromyographic (EMG) signals can be used as a control source of artificial limbs after it has been processed. The objective of this work is to achieve better classification for four different movements of a prosthetic limb making a time-frequency analysis of EMG signals which covers a feature extraction tools in the problem of the EMG signals while investigating the related dimensionalit...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impact...
متن کاملTechniques for Feature Extraction from EMG Signal
The myoelectric signal (MES) is one of the biosignals utilized in helping humans to control equipments. For this we required to recognize the hand movement. In this direction the first step is feature extraction. The optimal feature is important for the achievement in EMG analysis and control. By this extracted feature we reduce the computational cost of a multifunction myoelectric control syst...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کامل